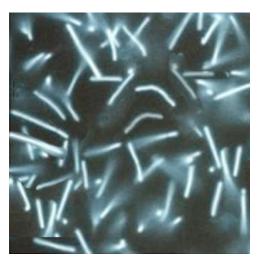
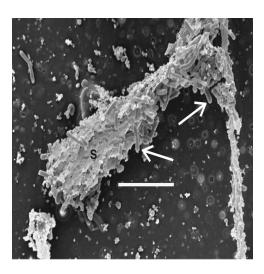
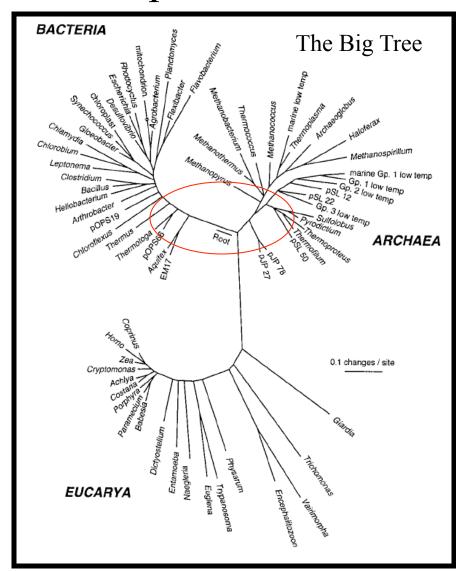
The biological potential of Mars and an application to potential MSL landing sites


Lindsey Tierney & Bruce Jakosky

University of Colorado at Boulder


Laboratory for Atmospheric and Space Physics &

Department of Geological Sciences


Follow the energy and the search for chemolithoautotrophs

Methanogens are typically found deep in the subsurface or in anoxic environments. Methanogens are responsible for the reduction of CO₂ by H₂ to produce CH₄

Scanning electron micrograph of rodshaped bacterial cells (arrows) attached to sulfur crystals (S) in a sulfurdominated hot spring, Scale bar 10 µm [Mathur et al., 2007]

Gibbs energy quantifies the energy available to support metabolism

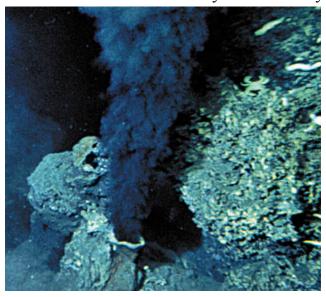
$$\Delta G = \Delta G^{\circ} + RT(\ln Q)$$

Greater $-\Delta G$ value = more energy available More available energy = more amount of biomass

Autotrophic **aerobes** require 80-170 kJ to produce 1 gram dry weight of biomass

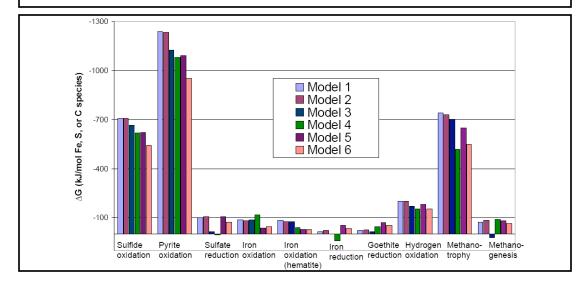
Autotrophic **anaerobes** require 30-40 kJ/g biomass [Heijnen and van Dijken, 1992]

Different geological environments provide different amounts of energy

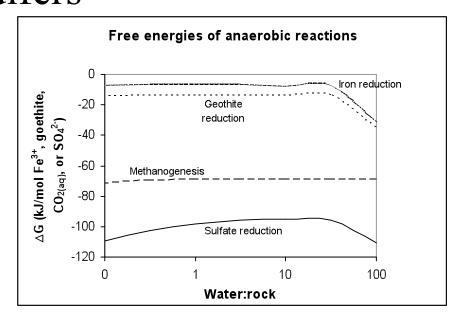


Grand Prismatic Spring in Yellowstone National Park

Columbia River Basalt

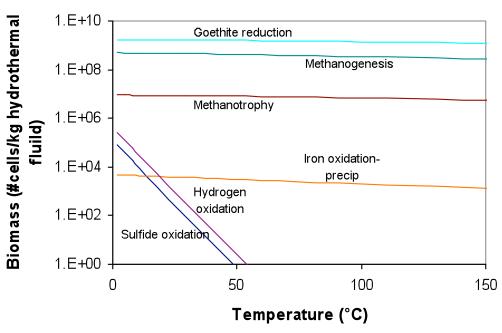

Hydrothermal system

Used geochemical modeling to constrain the geochemistry of the environment


Table 1: Chemolithoautotrophic reactions considered in this study that may have provided energy sources to potential martian organisms.

Rxn#	Involving mainly aqueous species	
1	$H_2S + 2 O_{2(aq)} = SO_4^{2-} + 2 H^+$	(Sulfide oxidation)
	Pyrite + H_2O + 3.5 $O_{2(aq)}$ = Fe^{2+} + 2 SO_4^{2-} + 2 H^+	(Pyrite oxidation)
3	$SO_4^{2-} + 2 H^+ + 4 H_{2(aq)} = H_2S + 4 H_2O$	(Sulfate reduction)
4	$Fe^{2+} 0.25 O_{2(aq)} + H^{+} = Fe^{3+} + 0.5 H_2O$	(Iron oxidation)
5	$Fe^{2+} + H_2O + 0.25 O_{2(aq)} = 0.5 Hematite + 2 H^+$	(Iron oxidation-precip)
6	$Fe^{3+} + 0.5 H_{2(aq)} = Fe^{2+} + H^{+}$	(Iron reduction)
7	Goethite $+2H^{+} + 0.5 H_{2(aq)} = 2 H_{2}O + Fe^{2+}$	(Goethite reduction)
	$H_{2(aq)} + 0.5 O_{2(aq)} = H_2O$	(Hydrogen oxidation)
	$CH_{4(aq)} + 2 O_{2(aq)} = 2 H_2O + CO_{2(aq)}$	(Methanotrophy)
	$CO_{2(aq)} + 4 H_{2(aq)} = 2 H_2O + CH_{4(aq)}$	(Methanogenesis)

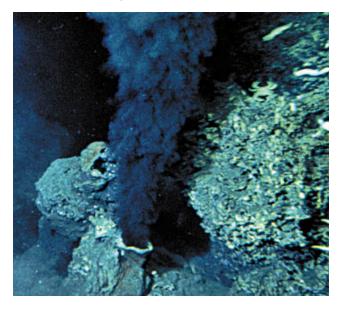
Energy available from reactions in martian basalt aquifers

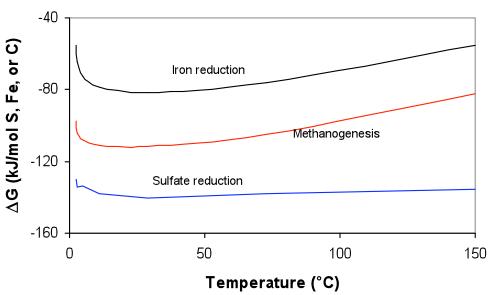


- Nine out of ten chemolithotrophic reactions are thermodynamically favorable even though anaerobic reactions should dominate in this type of environment
- Methanogenesis and sulfate reduction could produce up to 108cells/cm³
- This is on the high end of what is found in terrestrial subsurface environments (10⁴-10⁸ cells/cm³ have been detected)

Energy available from reactions in putative martian hot spring

Biomass estimates (Model 4)





- Equates to 10¹-10⁵cells/mL, which compares to terrestrial values of 10⁶ cells/cm³
- Assuming a martian hydrothermal fluid flux of 3 x 10¹¹ kg/yr, we calculated that this system could have supported 6 x 10⁷g biomass/yr

Energy available from mixing martian hydrothermal fluids with groundwaters

Anaerobic reactions (Model 5)

- Sulfate reduction could have produced up to 8.4 x 10⁵ cells/mL hydrothermal fluid. Deep-sea hydrothermal vents can support up to 10⁹ cells/mL
- Methanogenesis would have produced 6.7 x 10⁵ cells/ mL hydrothermal fluid compared to a reported value of 5 x 10⁷ cells/mL fluid for a modeled terrestrial hydrothermal system [McCollom and Shock, 1997]
- Using fluid fluxes of 5 x 10⁵ kg/hr [Converse, 1984], 249 grams of biomass could be produced per hour at one martian hydrothermal system

MSL potential landing site application

- Which of our models are applicable to the different landing sites?
- Do we have enough mineralogy data to determine oxidation states of landing site?
- Was there any redox disequilibrium at the potential sites?
- Would potential chemolithotrophs have been able to take advantage of redox reactions?

Summary table for MER sites

NAME	TARGET	RATIONALE	PRIORITY
Gusev Crater	Possible crater lake, layering, deltas, silica, Fe- sulfates	Possible fumarolic and hydrothermal deposit [Yen et al., 2008] similar to an environment like Yellowstone. Our results imply that chemolithoautotrophic reactions such as ferric iron reduction and methanogenesis could have been the most favorable reactions. A maximum of ~2 x 10 ⁶ cells/ml hydrothermal fluid could have potentially been produced	Medium
Meridiani Planum	Hematite concretions, low- T acid environment, ferric Fe, sulfates, oxidizing, acidic groundwater	Evidence that the rocks have been exposed to surface water at shallow depths [Squyres et al., 2004], suggesting a substantial degree of low-temperature chemical alteration. Our results imply that if Meridiani Planum was a location where low-temperature, shallow water altered basalt, then ~108 cells/cm³ basalt could have been produced	High

Summary table for each landing site

NAME	TARGET	RATIONALE	PRIORITY
Holden Crater	Fluvial layers, phyllosilicates	No evidence for any redox chemistry or chemical disequilibrium having occurred that would have been able to support chemolithotrophs	Low
Eberswalde Crater	Delta, phyllosilicates	Clays show that water was present, but no redox chemistry is involved, therefore not biologically useful from a thermodynamic point of view	Low
Mawrth Vallis	Layered phyllosilicates, oxidized and reduced Fe, hydrothermal?	Reduced and oxidized iron (nontronite) has been detected. Nontronite can form from the weathering of basalt at low temperatures or precipitate from hydrothermal fluids	High
Gale Crater	Layered sulfates, phyllosilicates, Fe-smectite	Evidence for both oxidizing and reducing conditions in the form of reduced smectite and oxidized sulfates	Medium

Conclusions

- Sites with lacustrine settings or fluvial channels would not harbor enough geochemical energy to support chemosynthesis
- Sites with evidence of hydrothermal alteration and interesting redox chemistry would have had more biological potential based on thermodynamic energy requirements
- Gale Crater and Mawrth Vallis may have had more biological potential if chemolithotrophic reactions are considered